Available online at www.sciencedirect.com

SCIENCE@DIRECT'*’ IOURNALOF

COMPUTATIONAL
| PHYSICS
ELSEVIER Journal of Computational Physics 215 (2006) 417-429

www.elsevier.com/locate/jcp

Numerical methods to improve the computing efficiency
of discrete dislocation dynamics simulations

C.S. Shin ®*, M.C. Fivel ®, M. Verdier ¢, S.C. Kwon ?

& Nuclear Material Technology Division, Korea Atomic Energy Research Institute, 150 Dukjin-dong, 305-353, Yuseong-gu,
Daejeon, Republic of Korea
b Génie Physique et Mécanique des Matériaux, Institut National Polytechnique de Grenoble, CNRS, BP 46, 38402, Grenoble, France
¢ Laboratoire de Thermodynamique et Physico-chemie Metallurgiques, Institut National Polytechnique de Grenoble, CNRS, BP 75,
38402 Grenoble, France

Received 3 February 2005; received in revised form 30 October 2005; accepted 31 October 2005
Available online 9 December 2005

Abstract

Dislocation dynamics (DD) is a method to simulate the collective dynamic behavior of dislocations and the plasticity of
metals on a mesoscopic scale. A DD simulation is computationally demanding due to the fact that the stress field of a dis-
location segment is long-ranged and it needs to examine a possible intersection between dislocation segments during their
motion. The computing efficiency of a serial DD code is enhanced by using the so-called ‘box method’. The box method
employing 21° boxes achieves 30-fold speed ups in the case involving 20,000 segments. The modified serial DD code has
then been parallelized by using the standard message passing interface (MPI). Both the stress computation and handling
segment intersection have been parallelized by using the domain decomposition method. Performance test on IBM p690
architecture shows that the parallel scheme adds up 20-fold speed ups when using 36 processors. Thus the parallel DD code
presented here is about 600 times faster than the previous code. We present a parallel algorithm for highly complex depen-
dencies in handling segment intersections and the performance test results in detail.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Dislocation dynamics (DD) simulations deal with physical phenomena resulting from a collective motion
of many dislocations. A DD is a very attractive tool for the plasticity of metals from the view that dislo-
cation lines, which are microscopic carriers of the metallic plasticity, are represented explicitly and its length
and time scale fills the gap between atomistic simulations and continuum mechanics. A DD method, thus, is
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expected to play a significant role in multiscale materials modeling and provides a physics-based description
of plasticity.

The DD approach has been applied to a wide range of dislocation-related problems, e.g., classical issues
such as dislocation patterning [1], strain hardening [2], elementary properties such as a junction formation
[3], interaction with second phase obstacles [4]. The behavior of dislocation structures under a complex load-
ing condition has also been extensively studied, e.g., fatigue simulations [5] and dislocation motion in a thin
foil [6].

There exist several DD methods which keep tracks of complex dislocation ensemble in three dimensions
[1,7-11]. The methods can be classified mainly by the description of dislocation lines: a curved dislocation line
is represented by: (i) a succession of finite segments [1,7], (ii) nodal points [8,10,11], and (iii) parametric
description [9]. The computational sequence of each DD method is however quite universal. Dislocation lines
are introduced in the simulation volume, forces on each line are computed comprising applied loads and inter-
dislocation stresses, and then dislocation configuration is updated according to a given mobility law. This
motion of dislocations results in a plastic deformation of the simulation volume. Noteworthy is the fact that
dislocation lines may intersect (or collide) and annihilate during its motion.

There is a certain limit on the computational size with which DD methods can handle. The main compu-
tational barrier comes from the fact that inter-dislocation stresses need O(N?) computations with N being a
number of segments or nodal points. Moreover, dislocation density normally increases during plastic defor-
mation, and so does a number of dislocation segments. For example, initial four segments multiply, becoming
70,000 segments in a fatigue simulation [12].

Numerous are the needs for large simulations, e.g., spontaneous formation of dislocation cell structures,
deformation of a volume containing myriad heterogeneities. To overcome the computational hurdle, manifold
numerical algorithms have been invented and adopted for inter-dislocation stress computation, which is the
most time-consuming part in DD methods. One of them is to partition the dislocation segments around a seg-
ment into near and remote segments, and compute the stresses due to the remote segments less frequently [13].
Replacing remote segments by a small number of equivalent superdislocations is another [7]. Development of
a multipole expansion method is plausible in that it may provide O(N) computations [14]. Despite all these
efforts, a maximum plastic strain currently reached is lower than 0.1%. It is noted that all the attempts men-
tioned above are concerned with a serial code, i.e., running on a single processor.

Another viable way which can boost the computing speed of DD is to employ a parallel computing scheme.
Parallel computing reduces a computation time by distributing the computational loads to several processors
and execute them simultaneously. Indeed, parallel computing has become popular in computation sciences,
which is the fruit of the development of parallel computing architectures and communication interfaces. Par-
allel computing has shown a success in many research fields and makes large-scale simulations, which are not
attainable with a single processor despite of the fast progression in technology, feasible [15,16].

To realize the high computing power of parallel machines, it is indispensable to adopt an appropriate par-
allel algorithm or to develop one if necessary. Candidate algorithms also depend on a parallel computing
architecture to be used. In the case of distributed memory architectures, a parallel algorithm needs to decom-
pose the data flow dependencies and set a sequence of message passings between processors to send and receive
a data set which belongs to a remote memory but vital for the local computation.

Recently in the field of DD, parallelization of a serial code has been attempted and newly developed par-
allel codes enlarge the expectation to have a physics-based plasticity model. Objects in DD (i.e., segments or
nodal points) actually represent a part of dislocation lines. So each object has an information about its con-
nectivity or topological configuration. Upon collision, this connectivity may change. Difficulties then arise
how to set a sequence of gathering objects information to detect collision and redistributing modified line
topologies.

An algorithm developed at Lawrence Livermore National Laboratory [11] partitions the simulation space
into domains by hierarchical recursive bisection. Each domain is then distributed to each processor. Regular
cubic cells are overlayed for stress computation. Data of nodal points needed to detect line collisions are com-
municated between processors which posses neighbor cells. An algorithm developed at UCLA is based on
hierarchical N-body methods [17] and builds a tree to split points representing dislocation lines. The structure
of this tree is then used to examine possible collisions and compute inter-dislocation stresses.
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In this work, we present our efforts to improve the computing efficiency of the discrete dislocation dynamics
(DDD) code, which is based on segment representation and originated from Kubin et al. [1], and further devel-
oped by Verdier et al. [13]. We partitioned the simulation space into regular boxes and used spatial domain
decomposition method. We overcame the complex data dependencies by paying attention to similarities
between the method we decompose the simulation space and the algorithms developed for finite difference
method.

We arranged this paper as follows. Section 2 describes the DDD method. In Section 3, the details of domain
decomposition and an algorithm for parallelizing the DDD code are discussed. Section 4 presents the results
of the performance test, and Section 5 summarizes this work.

2. Description of the DDD method

A dislocation line is generally curved in shape and moves on a specific plane which is called ‘slip plane’.
Each dislocation line holds the dislocation—displacement vector, i.e., the Burgers vector b. This vector deter-
mines elastic properties of a dislocation (e.g., self energy, stress field, etc.), and dislocation reactions. Possible
sets of the Burgers vector and the slip plane depend on the crystal structure involved. In the face-centered
cubic (FCC) crystal structure, for example, the slip planes and the Burgers vectors are {111} and (110) type,
respectively.

In the DDD code used in this work, a curved dislocation line is represented by a succession of two orthog-
onal dislocation segment sets. The line vector of one segment set (edge segment) is perpendicular to b and that
of the other set (screw segment) is parallel to b. Thus the method is called as the edge-screw model. A glide
direction of a segment is always perpendicular to its line direction. Maximum length of a segment is preset,
and any segment with a length longer than the maximum length is further subdivided.

Each segment is represented numerically by a set of integers, which comprises the coordinates of the start-
ing point, the length and the indexes of the line and the glide direction vector. The connection of a line is built
through a pointer of segments index.

Stresses are computed at the mid-point of each segment, and resolved on the slip plane along the glide direc-
tion. The velocity of each segment along glide direction is then given explicitly by a mobility law, and dislo-
cations subsequently propagate on the simulation crystal lattice by updating the positions of segments through
an integration of velocities.

The stresses on each segment include following four contributions: (i) the inter-dislocation stresses pro-
duced by all the other segments in the simulation volume, (ii) the externally applied stresses on the simulation
volume, (iii) the line tension of the segment, and (iv) the Peierls stress or the lattice resistance.

The stress field due to a dislocation segment is obtained using the stress field solution of a semi-infinite dis-
location, originally formulated in [18] and modified by Devincre [19] in the compact forms. External stresses
are applied either homogeneously to all the segments in the simulation volume or heterogeneously by coupling
with a finite element method. The line tension is accounted for by calculating the local curvature of each seg-
ment. The Peierls stress is simply implemented as a frictional force which exerts a back stress to motion of a
segment.

In FCC metals, a linear form of a mobility law is known to predict well the velocity of a dislocation segment
as shown in Eq. (1) with the resolved shear stress 7 on the segment and the phonon drag coefficient B

o= m

The next position of a segment is obtained by explicit integration of Eq. (1) using the time step A¢. In practice,
the use of a constant value of Az in the range from 0.5x 107 to 1 x 107 s has been verified successful. The
maximum velocity vy, is imposed so as to avoid the singularity of the elastic stress solution of a dislocation
segment.

A glide of a segment may change the length of the neighbor segments or create new segments if the neighbor
segment has the same line direction. A segment can collide with other segments during its glide, which produce
dislocation reactions. The type of reactions is determined by the relation of the Burgers vectors and the slip
planes involved. The overlapped portion of two colliding segments is annihilated if two segments have the
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Fig. 1. (a) Before annihilation: the virtual glide area of segment 1 is represented by shade, and segment 1 collides with segment 5. (b) After
annihilation: the neighbor segments of segment 1 are now changed to segments 2 and 4.

same Burgers vector and opposite line directions on the same slip plane. Then the links of the rest segments are
rebuilt as shown in Fig. 1. In the case of involving different slip planes, two segments of the Burgers vector b,
and b, are considered to form a junction if the norm of b; + b, is lower than the addition of the norm of each
Burgers vector. Once a junction has formed, segments are switched to junctions and the index of the associated
segment is registered.

Typical outputs of the DDD simulations are dislocation configuration, dislocation density, applied stress
and resulting plastic strain for each time step. Plastic strain is the resultant of dislocation motion. The slip
79 of a slip system °s” is computed as
« _ bl4Y
o - bl @
with b being the Burgers vector, ¥ the volume of the simulation box and A" the area swept by all the mobile
dislocations of the slip system s over a time step (4) = ".L;v;A¢). The components of the plastic strain tensor
are given by

12
1 K s s s s
6 = 5 (a5 + 6 )5 (3)
s=1
with nf‘v) and bf‘v) being the component of the slip plane normal and the Burgers vector of the slip system s,
respectively. The interested readers are referred to [13] for further details of the DDD method.

3. Numerical methods to accelerate the DDD code
3.1. Characteristics of the DDD method

Before developing a parallel algorithm suitable for the DDD method, a few characteristics of the method
are summarized.

Inter-dislocation stress computation is the most computationally intensive part in the DDD method. This is
due to the fact that the stress field at a distance r from a dislocation line is proportional to 1/r. The stress field
of a dislocation line is thus long-ranged. The use of a cutoff distance, beyond which the stress is neglected, may
cause a spurious formation of cells [20] and therefore it is requisite to compute the stresses of all the disloca-
tions in the volume. The stress computation has no flow dependence. The elapsed time for the stress compu-
tation will thus decrease by a factor of 1/P, if the computation load is distributed ideally over P processors.

Another time consuming part in the DDD method is handling the dislocation segments intersections, which
involves an examination of the possible collisions between segments or between a dislocation segment and
internal obstacles. This part has a highly complex flow dependency in that a movement of a segment modifies
not only its own position and connection, but also the links of the surrounding dislocation segments. This is
due to the fact that dislocation lines are represented as connected sets of segments and their connections are
often changed by cutting the dislocation lines. Dislocation segments are created or annihilated with time, so
the total number of dislocation segments is not constant.



C.S. Shin et al. | Journal of Computational Physics 215 (2006) 417-429 421
3.2. Domain decomposition into boxes

It is often observed that the majority of dislocation segments are idle or do not change abruptly within a
few time steps during the DDD simulations. The so-called ‘box method’ proposed in [13]is based on this expe-
rience, and decomposes the inter-dislocation stresses into a rapidly changing part and a slowly varying part. In
this work, the box method is revised by using a linked-list of segments and presented below.

The simulation volume is first decomposed into boxes. For the sake of the simplicity of the computa-
tion scheme, each side of the simulation volume is divided into M boxes. Hence the simulation volume
comprises of M> boxes. To facilitate the identification of the segments in the box ‘", linked-lists of seg-
ments are constructed. Using the linked-lists, it is now easy to differentiate near and remote segments, i.c.,
all the segments in the Lth neighboring boxes plus the segments in the same box are taken to be the near
segments of a specific segment. Short-distance stresses (6°%) stem from the near segments, and are com-
puted explicitly at every simulation step. The stresses due to the remote segments which are the rest seg-
ments except the near segments are taken to be long-distance stresses (6°%). 6™ is computed at the center
point of the box ‘> and shared by all the segments in the same box. The computation of ¢“* is updated
every f step and the previous value is used between updates. Hence ¢“* is approximated both spatially
and temporally.

The parameters which control the spatial error are box size, or inversely the number of boxes M. The
parameter responsible for the temporal error is . The number of neighbor layers L for grouping near and
remote segments affects both the spatial and the temporal error. The parameters of the method should be cho-
sen so that they guarantee both the optimum speed-up and accuracy. The effects of each parameter on com-
putation efficiency and error are studied. The results are presented in Section 4.1.

The same boxes are used for detecting segments collisions. The minimum size of the boxes is chosen so
that the size of boxes is at least bigger than the maximum free-flight distance of a segments, i.e., Umayx - AL
This criterion for the minimum size of the boxes reduces computing cost in handling segment intersec-
tions, because only the collisions with segments within the first neighboring boxes need to be considered
instead of inspecting all the segments in the simulation volume. This thus reduce the number of segments
to be inspected without any approximation. Fig. 2(a) shows a simulation volume decomposed into 10°
boxes.

\
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Fig. 2. (a) Decomposition of a simulation volume into 10 x 10 x 10 boxes. (b) Parallel-piped subsystems allocated to four processors.
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3.3. Parallelization algorithm

The boxes which decompose a simulation volume (Fig. 2(a)) are partitioned into parallel-piped subsystems
(Fig. 2(b)). The processors in a parallel computer are then logically arranged according to the topology of the
physical subsystems, and assigned to each subsystem. For each processor, the six face-sharing neighbor pro-
cessors are identified by a sequential array, nni(1:6). Periodic boundary conditions can be imposed by con-
structing a torus connection of the processors. Indexes of the boundary boxes of each subsystem are stored
in the array ibs(:) for each processor: ibs(1), ibs(3) and ibs(5) save the first box index along the x, y and z
dimensions, respectively, and ibs(2), ibs(4) and ibs(6) represent the last box index along each dimension.
ibs(:) are varied regularly to balance computing load between processors. The load balance scheme will be
explained in Section 3.4.

Each processor computes the long-distance stresses of the boxes only in its subsystem at every f step. Seg-
ments in each processor are identified by looking up the linked-lists of the segments in its own subsystem. The
short-distance stresses of the segments in each processor are then computed.

Handling segment intersections has a highly complex flow dependency as mentioned in Section 3.1. This
dependency can be shown as follows. Let a(i,j, k) represent the topology of the objects (e.g. the connectivity
of segments, the number of segments, etc.), in a box (i,/, k) indexed along the x, y and z dimensions. In order to
update a (i,/, k), all the information of the first neighboring boxes are needed because all the segments in the
first neighboring boxes are responsible for the segments collisions. In addition, the topology of the segments in
the first neighboring boxes are susceptible to a modification by the motion of the segments in the (i,/, k) box.
This dependency is represented in Fig. 3 in a simple 2D configuration. Thus special attention should be paid to
handling segment intersections so that no neighboring boxes are overlapped between the processors when
treating the segments’ motion.

The key idea of handling dislocation intersections is to avoid any overlap of the neighboring boxes of the
concurrently updated boxes. This is managed by first dividing the boxes inside a processor p into three groups
according to the topology of the neighboring boxes: inner boxes (IB), boundary boxes (BB) and corner boxes
(CB). Categorization of the boxes in a subsystem designated to processor ‘6’ in 4 x 4 x 1 parallel-piped subsys-
tems (Fig. 4(a)) is represented in Fig. 4(b). It should be noted that at least three boxes are required along each
dimension in each subsystem to categorize the boxes into these three groups.

IB has all of its neighboring boxes in the same processor, thus the motion of the segments in IB modifies the
segments located in the same processor only. The segments’ positions in IB of each processor can be updated
simultaneously and independently without involving any message passings because all the information needed
to handle the dislocation intersections are stored in a local memory and also there are no overlaps of the neigh-
boring boxes between the adjacent processors. BB and CB, on the other hand, have their neighboring boxes

a(i+1,j-1) a(i+1,j) a(i+1,j+1)

4
v

a(i,j-1) <> a@j) <7 a@j+D

4
v

a(i-1,j-1) ai-1,j) a(i-1,j+1)

Fig. 3. Dependency on the neighbors: the center element a(i,j) is being computed. All of the surrounding elements are used in the
computation and they may be also modified after computing the center element.
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(a) Parallel-piped subsystems (b) Categorization of the boxes

Fig. 4. (a) Top view of the 20 x 20 x 20 boxes being assigned to the 4 x 4 x 1 processors: Number represents processor ID. Processor 6 is
bounded by ibs(1) = 11, ibs(2) = 15, ibs(3) = 6, ibs(4) = 10 and neighbor processors are nni(1) = 5, nni(2) = 7, nni(3) = 2, nni(4) = 10. (b)
Three category of boxes in a processor p: inner boxes (IB), boundary boxes (BB) and corner boxes (CB).

extending into one or several processors. Thus they need message passings between the processors to obtain
the segments’ information of the corresponding neighboring boxes and to send back the information modified
by the segment collisions. In the case of BB, all the missing neighboring boxes are situated in one neighbor
processor, therefore message passings only with an adjacent processor is sufficient to provide the missing infor-
mation. CB, however, has neighboring boxes scattered in four different processors including itself (in a 2D
configuration), and thus are bound to involve complex message passings. Thus a segment motion in CB is han-
dled by one designated processor, or Master processor.

Updating the positions of the segments is performed by the following three steps. In the first step, all the
segments in IB of each processor are updated independently and simultaneously. In the second step, the seg-
ments in BB are updated through message passings with the corresponding neighbor processor. The order of
computation is set from right to left in the x, y and z dimension order. In the final step, all the information of
the segments are collected into the Master processor, and the segments’ motion in CB is treated by the Master
processor only. This procedure at least avoids complex message passings among several processors.

The overall flow chart of the new parallel DDD code is shown in Fig. 5. The ‘Motion of the segments’ step
is composed of three parts corresponding to IB, BB and CB. The involved message passings are also indicated.
It should be noted that all the processors begin each time step with the same segment information (marked as
‘(1y in Fig. 5). After the segment discretization, each processor computes and thus alters its local segments’
data independently up to ‘Inner boxes’ step ((2)’). While updating information in BB, two adjacent processors

Initialization of
parallel environments
Discretization of
the segments
Linked-lists of
the segments

Computation of the
long-distance stresses

(2)

Computation of the
short-distance stresses

[Inner boxes| -

Send/Receive
+—— = [Gather| (3)
[Corner boxes|

= [Broadcast]

Motion of
the segments

Update external stresses
and save outputs

Fig. 5. The overall flow chart of the new parallel DDD code.
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Fig. 6. An example taken from the fatigue tests of a cylindrical simulation volume containing particles of a bimodal size distribution and a
load balance scheme. (a) Intense slip bands of the fatigue tested volume containing bimodal-sized particles. (b) Decomposition of the
simulation volume by 3 x 3 x 1 processors.

mutually send and receive data and then send the local data to one processor (as indicated *Gather’ in Fig. 5).
The master processor then updates all the information in CB and broadcasts data to the other processors (as
indicated ‘Broadcast’ in Fig. 5). Hence all the processors share the same segment information.

3.4. Load balancing

In many cases, DDD simulations involve highly heterogeneous dislocation structures. An example is the
formation of intense slip bands in fatigue simulations as shown in Fig. 6 [12]. One obvious way to better bal-
ance the loads is to shift the boundaries of each subsystem, or the array ibs, so that each processor has approx-
imately the same number of segments, since the computation time is normally proportional to the number of
segments. Elapsed times are measured column-wise and the size of a column increases or decreases in the x, y
and z dimension order. The boundary can move until the number of boxes has reached the minimum number
of boxes (i.e., 3 boxes) of a subsystem in any dimension. An example of a boundary adjustment procedure
during a fatigue test is shown in Fig. 6(b).

The load balancing scheme for the parallel-piped subsystem used in this study has the following limitations:
(1) different subsystems on the same column should have the same width, thus the computing load is balanced
among the columns, not among the processors, (ii) there should be at least three boxes along each axis of each
subsystem, thus a load concentration can not be balanced adopting smaller than three boxes in any dimension.

4. Results
4.1. The computing efficiency and error of the domain decomposition method

The computing efficiency of the domain decomposition method is analyzed. The gain in stress computation
can be written as Eq. (4), where n°"€ is the number of computations of the original computation method and
n®** is that of the decomposition method. It is assumed that Ny, segments are homogeneously distributed
over the simulation volume decomposed by M* boxes and that periodic boundary conditions are applied along
each axis.

norig N2
Speed-up =5 = e @)
B (2L 4 1) B g (L W

Solid lines in Fig. 7 represent Eq. (4) as a function of M for Ngeem being 10,000, 20,000 and 90,000. The num-
ber of layers L is set to 1 and the 6™ update frequency fis 20. There exists a maximum in the speed-up curve,
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Fig. 7. Evolution of the speedup of the domain decomposition method as a function of the number of boxes and the number of segments.

and the optimum number of boxes is dependent on the number of segments. The actual gains in stress com-
putation time are plotted by solid dots in Fig. 7, which are measured with a 3.0-GHz Intel Pentinum 4 pro-
cessor and 1 GB memory. The measured data reflect well the characteristic of Eq. (4). It is found that the
optimum number of boxes increases with L and f. As for handling a segment intersection, there is always a
gain (M°>-fold speed ups) by increasing the number of boxes.

There exist two sources of errors in the internal stress computation, i.e., a spatial and a temporal error.
A spatial error occurs because ¢”® is computed at the center point of a box and assigned to all the seg-
ments in that box. A large box size (small M) is bound to have a large spatial error at the end of the diag-
onal due to a large deviation from the ¢*® computation position (the center of a box). A small box size
(large M) also has a large spatial error because ¢°* is now no longer slowly varying. Fig. 8 shows the

0.1 e N

0.08

0.06

0.04F ,,,,,,,, ,,,,,,,, ,,,,,,, 2 1ayers—>.-

Mean Relative Spatial Error

002 F it Blavers =@

b
6 8 10 12 14 16 18 20 22

Number of boxes by side

Fig. 8. Mean relative spatial error of the stress computation as a function of the number of boxes.
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variation of the mean relative spatial error as a function of the box number M with L =1. The relative
errors are measured along a diagonal of a box. The total number of segments is around 20,000
(p =2.5x10"? m 2 which is taken from a tensile simulation along [001]) and distributed homogeneously
in the volume. It is clear that there is an optimum number of boxes to minimize the spatial error. L is
increased up to 3 in the case of M = 21. The mean relative spatial error decreases down to 2% by increas-
ing L. The most effective way to minimize the spatial error is thus using the smallest box size with a certain
number of layers L.

A temporal error is induced by updating ¢“® with a frequency f. It is difficult to evaluate a temporal error
since the error is strongly dependent on the type of mechanical test simulated and the time step. Thus it is hard
to set an optimum f a priori. A test with 20,000 segments and ¢ = 10’ s~' showed as much as a 5% mean rel-
ative error in stress with f= 30 and a 2% error with f'= 10.

In conclusion, the computing efficiency increases 17-30-fold in the stress computation with the computing
error less than 4% by the optimal choice of parameters.

4.2. Performance of the new parallel code

A simple speed-up model of the new parallel algorithm is made and compared to the actual performance
results. It is assumed that the simulation volume is decomposed into M x M x M boxes and the total number
of processors used is P. Processors divide the boxes into a 2D array of P2 x P2 x 1 or into a 3D array of
P'3x P'3x P'3 The elapsed time in a single processor is approximately the sum of the time needed for
the stress computation (¢ and the time used to update segments’ positions (#£_, ). Assuming that £

. ) ¢ ; update update
is a fraction of £ . (£ 4ue = Mress)» the total elapsed time #° can be written as Eq. (5).

r= t:tress + tlslpdate = (1 + O‘)t:tress‘ (5)

Stress)
stress

The number of IB (By), BB (Bg) in each processor and the total number of CB (B¢) can be expressed using M
and P as Eq. (6) in the case of a 2D array and as Eq. (7) in the case of a 3D array of processors. It is assumed
that all the processors have the same subsystem size.

M 2 M
M 3 M ’ M
B, = <P1/3_2) : 33:6(131/3—2) : BC:P(12PI/3—16>. (7)

Assuming that dislocation segments are homogeneously distributed over the processors, the elapsed time for
the stress computation of each processor (5..) equals £, /P. Considering that the elapsed time for updating

stress
segments’ positions in a box is £, .../ M 3, the elapsed time of a processor (¢°) in a parallel architecture can be
expressed as:

S

Biress |, La
e = 5 S B+ By + Bo) +te (8)

p_ 4
r=t update P

stress
The elapsed time for updating B¢ is included at all the processors because each processor waits until the up-
date of B¢ by the Master processor is finished. 7. represents the time needed for the message passings.

A speed-up (£°/1°) is plotted in Fig. 9 in the case of a 2D and a 3D array of processors. The parameters used
are M = 21 and « = 0.02. Two cases are compared, i.e., t. /£ = 0 and #. /£ ., = 0.02. The solid line repre-
sents the case of a perfectly ideal case. The curve is drawn up to P = 49 in the case of a 2D array of processors.
Note that a maximum of 49 processors can be used with M = 21 in the 2D array of the processors, since there
should be at least three boxes along any dimension.

It is found that the efficiency of the algorithm is strongly dependent on the network speed (i.e., z.). If the
network is fast enough (z./£,. =~ 0), the algorithm speed-up can be as high as 23 using 25 processors with a
2D array of the processors. It seems that the 3D array of the processors has an advantage over the 2D array if
the same number of processors is used. In reality it is controversial, however, since a 3D array of processors

involves more message passings than a 2D array but the size of each message is smaller in a 3D array.
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Fig. 9. Speed-up model of the algorithm (Eq. (8)) with M =21, lopdate = 0.0265 ¢ for 2D array of processors (2D) and 3D array of

processors (3D).

Dislocation structures with 13,185, 37,182, 57,605 and 77,198 segments are extracted from a simple tensile
test of a single crystal with M = 20. Then the execution time for 100 steps with zero applied stress is measured
and the average elapsed time per step is obtained on the IBM p690 architecture with 1.7 GHz POWER4 pro-
cessors. Fig. 10 shows the measured speed-ups for each number of segments, and they are compared with the
speed-up model. Measured data correspond well with the model except the 13,185 segments case. A decrease
in the speed-up of the 13,185 segments case with the number of processors is due to the fact that the propor-
tion of the computation time to the communication time decreases.

40 T T T T T T T
N=13185 —— :

35 | N=37182 @
N=576035 - A
N=77198 o

30 b 120,015 gy, -mmme

Speedup

0 5 10 15 20 25 30 35 40
Number of CPUs

Fig. 10. Speed-up by using P processors in a 2D array for 13,185, 37,182, 57,605 and 77,198 segments (on IBM p690 architecture).
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5. Summary

The use of a doma in decomposition of a simulation volume and the linked-lists of segments enables an easy
disintegration of the stress fields into short and long-distance stresses and a fast handling of possible disloca-
tion intersections. Minimum box size is chosen such that a dislocation segment collides only with segments in
the first neighboring boxes. Long-distance stresses are computed every f simulation time steps at the center of
each box.

Boxes are divided into a 2D or 3D array of processors for a parallelization. Parallelization of the complex
flow dependency of handling segment intersection has been accomplished by categorizing the boxes into inner,
boundary and corner boxes and carefully controlling the sequence of the message-passings. The results of the
performance tests show that we achieved an increased speed-up with the number of processors despite the
complex flow dependency.

During the simulations, the number of segments can change dramatically. It is not unusual that a single
initial Frank-Read source produces millions of segments. At the beginning of a simulation, it is desirable
to use a small number of processors, because the speed-up can be reversed by increasing the number of pro-
cessors in the case of involving small number of segments (Fig. 10). One way to guarantee a maximum effi-
ciency with varying number of segments would be to change the number of processors dynamically based
on the current number of segments. This can be done, for example, by creating a new communicator of n
[1:N] processors in the initial communicator of N processors.

There is no gain from a memory aspect of the program by using several processors in the present parallel
version. The parallel code can further be improved by decomposing the data space, i.e., by making each pro-
cessor use only a necessary and sufficient amount of memory. This would save a memory space for a parallel
computation, and would also decrease the communication overheads and eventually increase the performance
of the code.
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